1 second school

বহুপদী উৎপাদক । বীজগণিত উৎপাদকে বিশ্লেষণ । উৎপাদকে বিশ্লেষণ সমাধান

উৎপাদকে বিশ্লেষণ কাকে বলে

শেয়ার করুন

Table of Contents

Toggle

উৎপাদকে বিশ্লেষণ কি

বীজগণিত উৎপাদকে বিশ্লেষণ
বীজগণিত উৎপাদকে বিশ্লেষণ

উৎপাদকে বিশ্লেষণ কে আমরা মৌলিক উৎপাদকে বিশ্লেষণ বলে থাকি। মৌলিক সংখ্যা হলো সেই সংখ্যা যা ঐ সংখ্যা এবং ১ ছাড়া অন্য কোন সংখ্যা দ্বারা বিভাজ্য বা ভাগ করা সম্ভব নয়। ৫ একটি মৌলিক সংখ্যা যাকে ৫ এবং ১ দ্বারায় কেবল ভাগ করা সম্ভব তাই ৫ একটি মৌলিক সংখ্যা। সুতারং উৎপাদকে বিশ্লেষণ বা মৌলিক উৎপাদকে বিশ্লেষণ বলতে কোন সংখ্যাকে এমন ভাবে বিশ্লেষন বুঝি যার উপাদান গুলো কে আর বিশ্লেষণ করা সম্ভব নয়। নিচের উদাহরন টি লক্ষ্য করি-

২০ একটি সংখ্যা একে বিশ্লেষণ করে পাওয়া যায়, ২x২x৫,  এখানে ২ বা ৫ এর কোন সংখ্যাকেই আর বিশ্লেষণ করা সম্ভব নয় সুতারং ২ ও ৫ মৌলিক সংখ্যা। তাহলে ২০ এর উৎপাদক বা মৌলিক উৎপাদক হল ২x২x৫।

সুতারং উৎপাদক হল কোন সংখ্যা বা রাশির মৌলিক বিশ্লেষণাত্মক রূপ।

বীজগণিতে উৎপাদকে বিশ্লেষণে ব্যবহার করা হয় এমন সূত্র সমূহঃ

উৎপাদকে বিশ্লেষণের ক্ষেত্রে নিম্নোক্ত সূত্র সমূহ বেশির ভাগ ক্ষেত্রে ব্যবহার করা হয়ে থাকে। সুতারং সূত্র গুলো মনে রাখা আবশ্যক-

১. a²-b²=(a+b)(a-b)

২. (a+b)²=a²+2ab+b²

৩. (a-b)²=a²-2ab+b²

৪. a³+b³=(a+b)(a²-ab+b²)

৫. a³-b³=(a-b)(a²+ab+b²)

৬. (a+b)³=a³+3a²b+3ab²+b³

৭. (a-b)³=a³-3a²b+3ab²-b³

৮. (x+a)(x+b)=x²+(a+b)x+ab

এই সূত্রগুলো প্রয়গের মাধ্যমে আমরা উৎপাদকে বিশ্লেষণ করে থাকি। নিচে সূত্র গুলো প্রয়োগ করে কিভাবে খুব সহজেই উৎপাদকে বিশ্লেষণ করা যায় তা নিয়ে আলোচনা করা হবে।

উৎপাদকে বিশ্লেষণ করার নিয়ম, পদ্ধতি বা কৌশলঃ-

কিছু নিয়ম মনে রেখে খুব সহজেই আমরা উৎপাদকে বিশ্লেষন করতে পারি। বীজগাণিতিক কোন রাশির উৎপাদকে বিশ্লেষণ করতে হলে যে সকল নিয়ম, পদ্ধতি বা কৌশল অনুসরণ করা প্রয়োজন তা নিম্নরূপ-

  • ধাপ-১. রাশির পদ গুলোর মাঝে মিল আছে কিনা, মিল থাকলে কমন নিতে হবে এবং কমন নেওয়া থাকলে গুন করতে হবে।
  • ধাপ-২. সূত্রে পড়ে কিনা দেখতে হবে বা সূত্রে পড়ানো যাই কি না সেটা দেখতে হবে।
  • ধাপ-৩. মিডিলটার্ম পদ্ধতি অনুসরণ করা যাই কিনা সেটা দেখতে হবে।
  • ধাপ-৪. ফাংশন করা যাই কিনা, গেলে ফাংশন করতে হবে।
  • ধাপ-৫. মান ধরে সমাধান করা যাই কি না দেখতে হবে, না গেলে যেরূপ আছে সেরূপ রেখে দিতে হবে।

উপরোক্ত কৌশল গুলো অনুসরণ করে এবার কিছু রাশির উৎপাদকে বিশ্লেষণ করা যাক-

m²+2mn²+n⁴ রাশিটির উৎপাদকে বিশ্লেষণ করতে গেলে প্রথমে দেখতে হবে কমন নেওয়া যাই কি না, আমরা রাশিটিতে দেখতে পাই ৩ টি পদ আছে এদের দুটি করে পদে মিল আছে কিন্তু দুটি পদ করে কমন নিলে একটি পদ বাকি থাকে,  অপর দিকে তিনটি পদে কমন নেওয়া যাবে না কারন তিনটি পদে মিল আছে এমন কোন উপাদান নেই। সুতারং কমন নেওয়া যাবে না। এবার আসি ২য় ধাপে, সূত্রে পড়ে কি না, হ্যা রাশিটিকে সূত্রে ফেলানো যেতে পারে,

(a+b)²=a²+2ab+b² এই সূত্র প্রয়োগ করা যেতে পারে। সুত্র প্রয়োগ করলে বিশ্লেষণটি হবে-

m²+2mn²+n⁴

=m²+2mn²+(n²)² [এখানে m=a এবং n²=b]

=(m+n²)²

বুঝতে অসুবিধা হলে এটি অন্য ভাবে করা যেতে পারে-

ধরি m=a এবং n²=b, মান বসিয়ে পাই-

m²+2mn²+n⁴

=m²+2mn²+(n²)²  [n²=b বসালে নিচের লাইন হবে]

=a²+2ab+(b)² [n²=b বসিয়ে]

=a²+2ab+b² [এটি (a+b)² এর সূত্র]

=(a+b)² [a=m এবং b=n² বসালে নিচের লাইন হবে]

=(m+n²)² [a=m এবং b=n² বসিয়ে]

m²n+nm²+mn+n²

রাশিটির উৎপাদকে বিশ্লেষণ করতে প্রথম ধাপে দেখতে হবে মিল আছে কিনা, রাশিটিতে দেখা যাই ৪ টি পদ আছে এবং ৪ টি পদে n মিল আছে সুতারং প্রথম ধাপ অনুসরণ করে কমন নিতে হবে-

m²n+n²m+mn+n²

=n(m²+nm+m+n) [সকল পদে n মিল]

=n{m(m+n)+1(m+n)} [২টি করে পদে মিল]

=n(m+n)(m+1) [২টি করে পদে মিল]

3m²+7m+2 রাশিটির দিকে খেয়াল করলে দেখা যায় এটি তে শুধু ১ম ও ২য় পদে কমন নেওয়া যায় কিন্তু ৩য় পদে কিছু মিল না থাকায় কমন নেওয়া সম্ভব নয়। সুতারং ১ম ধাপ বা কমন নেওয়া চলবে না। এবার দেখি সূত্রে পড়ে কি না, না এটি কোন ক্রমেই সূত্রে ফেলানো সম্ভব নয়। সুতারং ২য় ধাপ চলবে না। এবার আসি ৩য় ধাপে। মিডিল টার্ম, হ্যা এটি মিডিল টার্ম করা সম্ভব, কারন রাশিটিতে ৩ টি পদ আছে এবং চলক m এর ঘাত গুলো ধারাবাহিক ভাবে আছে অর্থাৎ ১ম পদে m এর ঘাত স্কয়ার বা 2, ২য় পদে m এর ঘাত 1 এবং ৩য় পদে m নাই।

তাহলে এটা বোঝা গেল যে রাশিটির উৎপাদকে বিশ্লেষনের জন্য মিডিল টার্ম পদ্ধতি অনুসরণ করতে হবে। মিডিল টার্ম করার নিয়ম সম্পর্কে অন্য কোন পাঠে বিস্তারিত আলোচনা করা হবে। এখানে সংক্ষেপে বিষয়টি আলোচনা করা হল। মিডিল টার্মের নিয়ম হল, কোন রাশিতে তিনটি পদ থাকলে ৪ টি পদে রূপান্তর করা। ৪ টি পদে রূপান্তর করতে হলে ১ম পদের সংখ্যা এবং শেষ পদের সংখ্যার গুন ফলকে ভাংগিয়ে দুটি পদ করতে হবে। 3m²+7m+2 এই রাশিতে ১ম পদে সংখ্যা হল 3, শেষ পদে সংখ্যা 2, সুতারং এদের গুনফল 3×2=6. এবার 6 সংখ্যাটিকে এমন দুই ভাগে ভাগ করতে হবে যেন তাদের গুনফল 6 হয়। 6 কে অনেক ভাবে ২ ভাগ করা সম্ভব যেমন, 3×2=6, 6×1=6. এখানে 3m²+7m+2 রাশিতে মাঝের পদ ছিল 7 যা একমাত্র 6 এর দুই ভাগ 6×1 দিয়ে পুরন করা সম্ভব কারন 6 এবং 1 এর যোগফল 7 হয়। সুতারং বিশ্লেষণ হবে নিম্নরূপ-

3m²+7m+2

= 3m²+(6+1)m+2 [3×2=6=6×1,  6+1=7]

=3m²+6m+m+2 [ব্রাকেট থাকায় গুন করে পাওয়া]

=3m(m+2)+1(m+2) [জোড়ায় জোড়ায় কমন]

=(m+2)+(3m+1) [জোড়ায় জোড়ায় কমন]

m³+m+2 রাশিটির উৎপাদক করতে ১ম ধাপে কমন নেওয়া সম্ভব নয়, ২য় ধাপে সূত্রে পড়ে না, ৩য় ধাপে মিডিল টার্ম করা যায় না কারন 1×2=2=2×1, কিন্তু 2 এবং 1 যোগ করলে হবে 3 কিন্তু মাঝের পদে আছে m এর সহগ 1 ফলে 2 এবং 1 এর যোগ চলবে না। অপার দিকে 2 থেকে 1 বিয়োগ করলে যদিও 1 হবে তবে সমান সংখ্যাক পদের আগে একই প্রকার চিহ্ন থাকবে না ফলে এটাও চলবে না। অন্যদিকে ১ম পদে m এর পাওয়ার বা ঘাত 3 ফলে ২য় পদে m এর ঘাত থাকার কথা ছিল 2, কিন্তু 2 বা থেকে আছে 1, ফলে মিডিলটার্ম কখনোয় করা সম্ভব নয়। এমত অবস্থায় m³+m+2 রাশিটির ফাংশন করতে হবে।

ফাংশন করতে গেলে m এর পরিবর্তে এমন একটি সংখ্যা ধরতে হবে, যা ধরলে পুরো রাশির মান 0 হবে। যদি m³+m+2 রাশিতে m=-1 ধরি তবে, (-1)³+(-1)+2=-1-1+2=-2+2=0 হয়। সুতারং রাশিটির একটি উৎপাদক হবে, m-(-1)=m+1, এখানে m এর পর সূত্র অনূযায়ী – (মাইনাস) চিহ্ন বাসানো হয়েছে এবং তার পর যে মান ধরা হবে সেটা অর্থাৎ -1 বসানো হয়েছে। এখানে উত্তর হয়েছে m+1.

এবার কয়েকটি ধাপ অবলম্বন করে উৎপাদক করা যাবে-

প্রথমত- রাশিটির ১ম পদ m³ কে ফাংশনের m দ্বারা ভাগ করতে হবে এবং ভাগফল কে m দ্বারা গুন করতে হবে।

m³÷m=m² এবং m²(m+1)=m³+m²

সুতারং ১ম ধাপে বিশ্লেষণ দাড়ায়-

m²(m+1)

=m³+m² এখানে m² রাশিতে ছিল না সুতারং একে বাদ দেওয়ার জন্য -m² গুনফলের সাথে লিখতে হবে,  ফলে দাঁড়ায়-

m²(m+1)

=m³+m²-m²

দ্বিতীয়ত – অতিরিক্ত m² কে আবার ফাংশনের m দিয়ে ভাগ করতে হবে এবং ভাগ ফলকে আগের মতই আবার (m+1) দ্বারা গুন করতে হবে, অর্থাৎ m²÷m=m, এবং m(m+1)=m²+m ফলে এটুকু ১ম অংশের পরে বসালে দাঁড়ায় –

m²(m+1)-m(m+1)

=m³+m²-m²-m

তৃতীয়ত- এখানে ২য় ধাপে -m হলেও মূল রাশিতে ছিল  +m ফলে -m এর সাথে +2m হলেই -m+2m=+m হওয়া সম্ভব। সুতারং আগের মতই 2m কে ফাংশনের m দ্বারা ভাগ করে (m+1) দ্বারা গুন করলে হবে, 2m÷m=2 এবং 2(m+1)=2m+2. সুতারং তৃতীয় ধাপে দাঁড়ায় –

m²(m+1)-m(m+1)+2(m+1)

=m³+m²-m²-m+2m+2

রাশিটির সর্বচ্চ ঘাত বা পাওয়ার ছিল 3 এবং ৩ বার (m+1) দিয়ে রাশিকে বিশ্লেষণ করা হয়েছে সুতারং অবশেষে উৎপাদকে বিশ্লেষণ হবে –

m³+m+2 [মূল রাশি]

=m³+m²-m²-m+2m+2 [বিশ্লেষনের ২য় লাইন]

=m²(m+1)-m(m+1)+2(m+1) [বিশ্লেষনের ১ম লাইন]

=(m+1)(m²-m+2) [কমন নেওয়া হয়েছে]

কয়েকটি রাশির উৎপাদকে বিশ্লেষণঃ

  • m²-m-6

=m²-3m+2m-6 [মিডিলটার্ম]
=m(m-3)+2(m-3) [জোড়ায় জোড়ায় কমন]
=(m-3)(m+2) [কমন]

  • m⁴-2m²+1

=(m²)²-2.m².1²+1² [সূত্রের প্রয়োগ করতে বিশ্লেষণ]
=(m²-1)² [সূত্রের প্রয়োগ]
={(m)²-(1)²}² [সূত্রের প্রয়োগ করতে বিশ্লেষণ]
={(m+1)(m-1)}² [সূত্রের প্রয়োগ]
=(m+1)²(m-1)²

  • m⁴-2m²+1

=m⁴-m²-m²+1 [মিডিলটার্ম পদ্ধতি প্রয়োগ]
=m²(m²-1)-1(m²-1) [জোড়ায় জোড়ায় কমন]
=(m²-1)(m²-1) [কমন]
=(m+1)(m-1)(m+1)(m-1) [সূত্রের প্ররয়োগ করে]
=(m+1)²(m-1)²

  • am³+am²n+am²+amn

=am(m²+mn+m+n) [কমন]
=am{m(m+n)+1(m+n)} [জোড়ায় জোড়ায় কমন]
=am(m+n)(m+1) [কমন]

বহুপদী (Polynomial)

 প্রত্যেকেই ধ্রুবক অর্থাৎ x বর্জিত নির্দিষ্ট সংখ্যা, a0≠0 এবং n∈N∪{0}  হলে, P(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots \ldots+a_{n} আকারের যেকোনো রাশিকে x এর n তম ঘাতের বহুপদী রাশি বলা হয়। বহুপদীর পদগুলির মধ্যে x এর গরিষ্ঠ ঘাতকে বহুপদীর ঘাত বা মাত্রা (degree) বলা হয়। বহুপদীতে গরিষ্ঠ মাত্রাযুক্ত পদটিকে মূখ্যপদ এবং বৃহত্তম ঘাত বিশিষ্ট পদের সহগকে মূখ্য সহগ (Coefficient) বলা হয়। 0 মাত্রাযুক্ত অর্থাৎ চলক-বর্জিত পদটিকে ধ্রুবপদ বলা হয়। 3 x^{4}+5 x^{3}+2 x^{2}+9 x+1, x চলকের একটি বহুপদী রাশি, যার ঘাত 4, মূখ্যপদ 3 x^{4} , মুখ্য সহগ 3 এবং ধ্রুবপদ 1.

লক্ষণীয় যে, 3 x^{2}+\frac{5}{x^{3}}+7 রাশিটি বহুপদী নয়। কেননা, রাশিটির দ্বিতীয় পদে x এর ঘাত ঋণাত্মক (–3)।

a^{x}, e^{x}, \log x, \ln x   এরা বহুপদী নয়। n=0 হলে P(x) কে 0 ঘাতবিশিষ্ট বহুপদী বলা হয়।

x চলকের বহুপদীকে সাধারণত x এর ঘাতের অধঃক্রমে (অর্থাৎ, মূখ্যপদ থেকে শুরু করে ক্রমে ক্রমে ধ্রুব পদ পর্যন্ত) বর্ণনা করা হয়। এরূপ বর্ণনাকে বহুপদীটির আদর্শ রূপ (Standard form) বলা হয়।

বহুপদী ও তার ঘাত (Polynomial and its degree) : বহুপদী এক ধরনের বীজগাণিতিক রাশি (Expression) । এতে এক বা একাধিক পদ (element) থাকতে পারে । এক বা একাধিক চলকের (variable) কেবলমাত্র ধনাত্মক পূর্ণসাংখ্যিক ঘাত ও কোন ধ্রুবকের (constant) গুণফল হল বহুপদীর বিভিন্ন পদ । বহুপদীর পদগুলোর সর্বোচ্চ ঘাতকে বহুপদীয় ঘাত (Degree) বলে ।

এক চলকের বহুপদী : এর প্রতি পদে শুধুমাত্র একটি চলকের বিভিন্ন পূর্ণ সাংখ্যিক ঘাত ও ধ্রুবক থাকে । যেমন :

a0xn+a1xn-1+a2xn-2+ ……+an একটি এক চলকের বহুপদী যেখানে x চলক । a 0, a1, a2, …… an ∈ R হল ধ্রুবক যেখানে a0 ≠ 0 । n হল x এর সর্বাধিক ঘাত । লক্ষণীয়, x এর ঘাত কখনও ঋণাত্মক হতে পারবে না । a0 কে মুখ্য সহগ বলা হয় । এক চলক x-বিশিষ্ট এরূপ বহুপদী রাশিকে f(x) দ্বারাও প্রকাশ করা হয় ।

 

সমমাত্রিক ও অসমমাত্রিক বহুপদী (Homogeneous and Non-homogeneous polynomials):

কোনো বহুপদীর সকল পদের ঘাত সমান হলে ঐ বহুপদীকে সমমাত্রিক বহুপদী এবং সমান না হলে তাকে অসমমাত্রিক বহুপদী বলা হয়।  a x^{2}+2 h x y+b y^{2}একটি  x ও y চলকের দুই ঘাতবিশিষ্ট সমমাত্রিক বহুপদী।

a x^{2}+b x+c একটি x চলকের দুই ঘাতবিশিষ্ট অসমমাত্রিক বহুপদী কেননা, বহুপদীটিতে প্রথম পদের ঘাত দুই, দ্বিতীয় পদের ঘাত এক এবং তৃতীয় পদের ঘাত শূন্য। অর্থাৎ, সকল পদের ঘাত সমান নয়।

বহুপদী সমীকরণ (Polynomial equation):

বহুপদী সমীকরণের উৎপাদক উপপাদ্য (Factor theorem of polynomial equations):

i. বীজগণিতের মৌলিক উপপাদ্য (Fundamental theorem of algebra) : প্রতিটি বহুপদী সমীকরণের অন্তত একটি মূল (বাস্তব কিংবা জটিল) থাকে ।

ii. n ঘাত বিশিষ্ট বহুপদী সমীকরণে n সংখ্যক মূল আছে (বাস্তব কিংবা জটিল) । তবে সব মূলগুলো ভিন্ন নাও হতে পারে ।

iii. ভাগশেষ উপপাদ্য (Remainder theorem) : যদি কোন বহুপদী f(x) কে x-a দ্বারা ভাগ করা হয়, তবে ভাগশেষ হবে f(a) ।

iv. উৎপাদক উপপাদ্য (Factor theorem) : যদি a, বহুপদী সমীকরণ f(x) এর একটি মূল হয় তবে (x-a) বহুপদী f(x) এর একটি উৎপাদক হবে ।

v. অনুবন্ধী মূল উপপাদ্য (Conjugate pairs theorem) : a+ib কোন বহুপদী সমীকরণের জটিল মূল হলে এর অনুবন্ধী a-ib ও সমীকরণের মূল হবে । এবং a+√b একটি মূল হলে (যেখানে √b অমূলদ), এর অনুবন্ধী a-√b ও সমীকরণের একটি মূল হবে ।

· বহুপদীর মূল সহগ সম্পর্ক : যদি a,b,c,d, …… k কোন বহুপদী সমীকরণ p0xn+p1xn-1+p2x n-2+ …… +pn এর মূল হয় তবে,

i. = a+b+c+ …… + k = – p1/p0

ii. = ab+bc+cd+ …… = P2/P0

iii. a×b×c×d×……×k = (-1)n (pn/p0)

দ্বিঘাত সমীকরণ (Quadratic equation) :

বহুপদী সমীকরণের ঘাত 2 হলে তাকে দ্বিঘাত সমীকরণ বলে । এক চলকবিশিষ্ট দ্বিঘাত সমীকরণের আদর্শ রূপ-

ax2+bx+c = 0; যেখানে a≠0; a,b,c মূলদ সংখ্যা

উক্ত সমীকরণ সমাধান করলে x এর দুইটি মান পাওয়া যাবে অর্থাৎ দ্বিঘাত সমীকরণের দুইটি মূল হবে-

b+b24ac2a এবং bb24ac2a

· দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক : ax2+bx+c = 0 সমীকরণের মূল দুইটি α এবং β (α>β) হলে,

i. α=α+β=b/a = – x এরসহগ /  x 2এরসহগ

ii. αβ = c/a = ধ্রুবকপদ / x 2এরসহগ

· দ্বিঘাত সমীকরণের মূলের প্রকৃতি (Nature of the roots) : আমরা জানি, ax 2+bx+c = 0 দ্বিঘাত সমীকরণের মূল, x=b±b24ac2a । এখানে, (b2 -4ac) এর মান পর্যালোচনা করলেই দ্বিঘাত সমীকরণের মূলদ্বয়ের প্রকৃতি জানা যায় । এজন্য (b2-4ac) কে দ্বিঘাত সমীকরণের নিশ্চায়ক বা নিরূপক (Discriminant) বলা হয় ।

i. যদি b2-4ac=0 ⇒ b2=4ac হয় তবে মূল দুইটি হবে –b/2a এবং –b/2a । অর্থাৎ মূল দুইটি বাস্তব, মূলদ ও সমান হবে ।

ii. b2-4ac>0 ⇒ b2>4ac হলে মূলদ্বয় বাস্তব ও অসমান হবে ।

iii. b2-4ac<0 ⇒ b2<4ac হলে মূলদ্বয় অনুবন্ধী জটিল সংখ্যা হবে ।

  iv. (b2-4ac) পূর্ণবর্গ হলে মূলদ্বয় বাস্তব, মূলদ ও অসমান হবে ।

v. c = 0 হলে একটি মূল 0 হবে ।

vi. b = 0 হলে মূল দুইটি হবে √(-c/a) এবং -√(-c/a) অর্থাৎ মূল দুইটির মান সমান কিন্তু বিপরীত চিহ্নবিশিষ্ট হবে । লক্ষণীয়, এক্ষেত্রে a ও c একই চিহ্নযুক্ত হলে মূলদ্বয় জটিল    এবং বিপরীত চিহ্নযুক্ত হলে মূলদ্বয় বাস্তব হবে ।

· দ্বিঘাত সমীকরণের সাধারণ মূল থাকার শর্ত : a1x2+b1x+c1=0 ও a2x2+b2x+c 2=0 সমীকরণদ্বয়ের-

i. একটি মূল সাধারণ হবে যদি (a1b2-a2b1)(b1c2-b2c1) = (c 1a2-c2a1)2 হয় ।

ii. উভয় মূলই সাধারণ হবে যদি a1/a2 = b1/b 2 = c1/c2 হয় ।

· দ্বিঘাত সমীকরণ গঠন : দ্বিঘাত সমীকরণের দুইটি মূল দেয়া থাকলে তা থেকে দ্বিঘাত সমীকরণটি গঠন করা যায় । সমীকরণটি হবে-

x2 – (মূলদ্বয়ের যোগফল)x + (মূলদ্বয়ের গুণফল) = 0

অর্থাৎ দ্বিঘাত সমীকরণের দুইটি মূল α ও β হলে সমীকরণটি হবে-

x2 – (α+β)x + αβ = 0

· ত্রিঘাত সমীকরণ Cubic equation) : বহুপদী সমীকরণের ঘাত 3 হলে তাকে ত্রিঘাত সমীকরণ বলে । এক চলকবিশিষ্ট ত্রিঘাত সমীকরণের আদর্শ রূপ-

ax3+bx2+cx+d = 0; যেখানে a≠0; a,b,c,d মূলদ সংখ্যা

· ত্রিঘাত সমীকরণের মূল-সহগ সম্পর্ক : ax3+bx2+cx+d = 0 সমীকরণের মূলত্রয় α,β,γ হলে-

i. = α+β+γ = -b/a

ii. = αβ+βγ+γα = c/a

iii. αβγ = -d/a

· Important formula :

i. (a+b)2 = a2+2ab+b2 = (a-b)2 +4ab

ii. (a-b)2= a2-2ab+b2 = (a+b)2 -4ab

iii. 4ab = (a+b)2-(a-b)2

iv. a2+b2 = (a+b)2-2ab = (a-b)2 +2ab

v. a3+b3 = (a+b)3-3ab(a+b) = (a+b)(a 2-ab+b2)

vi. a3-b3 = (a-b)3+3ab(a-b) = (a-b)(a 2+ab+b2)

vii. a4+b4 = [(a+b)2-2ab]2 -2(ab)2

viii. a2+b2+c2 = (a+b+c)2 -2(ab+bc+ca)

ix. (a+b)2+(b+c)2+(c+a)2 = 2(a2 +b2+c2+ab+bc+ca)

x. (a-b)2+(b-c)2+(c-a)2 = 2(a2 +b2+c2-ab-bc-ca)

xi. a3+b3+c3-3abc = (a+b+c)(a2 +b2+c2-ab-bc-ca)

= ½ (a+b+c){(a-b)2+(b-c)2+(c-a)2}

= (a+b+c){(a+b+c)2-3(ab+bc+ca)}

গাণিতিক সমস্যা ও সমাধান :

1. x3-px2+qx-r = 0 সমীকরণের মূলগুলো α,β,γ হলে-

a. α

b. αβ

c. α2

d. α3 এর মান নির্ণয় কর ।

সমাধান :

a. এখানে, α=α+β+γ=(p/1)=p [See দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক i]

b. αβ=αβ+βγ+γα=q/1=q [See ত্রিঘাত সমীকরণের মূল-সহগ সম্পর্ক ii]

c. α2=α2+β2+γ2=(α+β+γ)2(αβ+βy+γα) [See Important formula viii]

= p2-2q

d. α3=α3+β3+γ3=(α+β+γ){α2+β2+γ23(αβ+βγ+γα)}+3αβγ [See Important formulae xi]

= p(p2-2q-3q)+{-(-r/1)} [See ত্রিঘাত সমীকরণের মূল সহগ-সম্পর্ক]

= p3-5pq+3r

2. x3+qx+r=0 এর মূলগুলো α,β,γ হলে γ2α+β+α2β+γ+β2γ+α এর মান নির্ণয় কর ।

সমাধান :

এখানে, x3+qx+r = 0 ⇒ x3+0.x2+qx+r = 0

∴ α+β+γ = 0…(i) [See ত্রিঘাত সমীকরণের মূল-সহগ সম্পর্ক i]

(i) ⇒ α+β = -γ; β+γ = – α; α+γ = -β

∴ γ2α+β+α2β+γ+β2γ+α=γ2γ+α2α+β2β=γαβ=(α+β+γ)=0

3. k এর মান কত হলে, (3k+1)x2+(11+k)x+9 = 0 সমীকরণের মূলগুলো-

a. সমান

b. বাস্তব ও অসমান

c. জটিল হবে?

সমাধান :

এখানে, নিশ্চায়ক, D = (11+k)2-4(3k+1)9 [See দ্বিঘাত সমীকরণের মূলের প্রকৃতি]

= k2+22k+121-108k-86

= k2-86k+85

= k2-k-85k+85

= (k-1)(k-85)

a. মূলগুলো সমান হবে যদি D=0 হয় [See দ্বিঘাত সমীকরণের মূলের প্রকৃতি i]

⇒ (k-1)(k-85) = 0

⇒ k=1 অথবা 85 হয়

b. মূলগুলো বাস্তব ও অসমান হবে যদি D>0 হয় [See দ্বিঘাত সমীকরণের মূলের প্রকৃতি ii]

⇒ (k-1)(k-85) > 0

⇒ k<1 অথবা 85>0 হয় [See Algebra – chaper 2 – বাস্তব সংখ্যা]

c. মূলগুলো জটিল হবে যদি D<0 হয় [See দ্বিঘাত সমীকরণের মূলের প্রকৃতি iii]

⇒ (k-1)(k-85) < 0

⇒ k<1<85 হয় [See Algebra – chaper 2 – বাস্তব সংখ্যা]

4. x2-2x+3 = 0 সমীকরণের মূল দুইটি α ও β হলে নিচের মূলগুলো দ্বারা গঠিত সমীকরণসমূহ নির্ণয় কর ।

i. -α, -β

ii. 1/α, 1/ β

iii. -1/ α, -1/ β

iv. α+β, αβ

v. 4α, 4β

vi. α -1, β-1

vii. α2, β2

viii. 1/ α2, 1/β2

ix. α+ α-1, β+β-1

x. α+β-1, β+ α-1

xi. 1α1,1β1

xii. 1/α3, 1/β3

সমাধান :

এখানে, α+β = 2 [See দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক i]

αβ = 3 [See দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক ii]

i. নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = -α-β = -(α+β)

মূলদ্বয়ের গুণফল = (-α)(-β) = αβ

∴ -α ও -β মূলবিশিষ্ট সমীকরণ হবে,

x2-(-α-β)x+(-α)(-β) = 0 [See দ্বিঘাত সমীকরণ গঠন]

⇒ x2+(α+β)x+αβ = 0

⇒ x2+2x+3 = 0

Short-cut : ax2+bx+c=0 সমীকরণে মূলদ্বয় α ও β হলে -α ও -β মূলবিশিষ্ট সমীকরণ হবে, ax2-bx+c=0

ii. নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = 1/α1/β=α+βαβ=2/3

মূলদ্বয়ের গুণফল = 1/α × 1/β = 1/(αβ) = 1/3

∴ 1/α ও 1/β মূলবিশিষ্ট সমীকরণ হবে,

x2-(1/α+1/β)x+(1/α)(1/β) = 0 [see দ্বিঘাত সমীকরণ গঠন]

⇒ x2-2/3x+1/3 = 0

⇒ 3x2-2x+1 = 0

Short-cut : ax2+bx+c = 0 সমীকরণের মূলদ্বয় α ও β হলে 1/α ও 1/β মূলবিশিষ্ট সমীকরণ হবে, cx2+bx+a = 0

iii. নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = -1/α-1/β = – = -2/3

মূলদ্বয়ের গুণফল = (-1/α)×(-1/β) = 1/(αβ) = 1/3

∴ -1/α ও -1/β মূলবিশিষ্ট সমীকরণ হবে,

x2-(-1/α-1/β)x+(-1/α)(-1/β) = 0 [See দ্বিঘাত সমীকরণ গঠন]

⇒ x2+(2/3)x+(1/3) = 0

⇒ 3x2+2x+1 = 0

Short-cut : ax2+bx+c = 0 সমীকরণের মূলদ্বয় α ও β হলে -1/α ও -1/β মূলবিশিষ্ট সমীকরণ হবে, cx2-bx+a = 0

iv. নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = α+β+αβ = 5

মূলদ্বয়ের গুণফল = (α+β)(αβ) = 6

∴ α+β ও αβ মূলবিশিষ্ট সমীকরণ হবে,

x2-(α+β+αβ)x+(α+β)(αβ) = 0 [see দ্বিঘাত সমীকরণ গঠন]

⇒ x2-5x+6 = 0

Short-cut : ax2+bx+c = 0 সমীকরণের মূলদ্বয় α ও β হলে α+β ও αβ মূলবিশিষ্ট সমীকরণ হবে, ax2+a(b-c)x-bc = 0

v. নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = 4α+4β = 4(α+β) = 8

মূলদ্বয়ের গুণফল = (4α)(4β) = 16αβ = 48

∴ 4α ও 4β মূলবিশিষ্ট সমীকরণ হবে,

x2-(4α+4β)x+(4α)(4β) = 0 [see দ্বিঘাত সমীকরণ গঠন]

⇒ x2-8x+48 = 0

Short-cut : ax2+bx+c = 0 সমীকরণের মূলদ্বয় α ও β হলে nα ও nβ মূলবিশিষ্ট সমীকরণ হবে, ax2+nbx+n2c = 0

vi. নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = α-1+β-1 = α+β-2 = 0

মূলদ্বয়ের গুণফল = (α-1)(β-1) = αβ-α-β+1

= αβ-(α+β)+1

= 2

∴ (α-1) ও (β-1) মূলবিশিষ্ট সমীকরণ হবে,

x2-(α-1+β-1)x+(α-1)(β-1) = 0 [see দ্বিঘাত সমীকরণ গঠন]

⇒ x2+2 = 0

Short-cut : ax2+bx+c = 0 সমীকরণের মূলদ্বয় α ও β হলে (α-n) ও (β-n) মূলবিশিষ্ট সমীকরণ হবে, ax2-(b-2an)x+c+bn+n2 = 0

vii. নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = α22 = (α+β)2-2αβ = 4-6 = -2

মূলদ্বয়ের গুণফল = α2β2 = (αβ)2 = 9

∴ α2 ও β2 মূলবিশিষ্ট সমীকরণ হবে,

x2-(α22)x+(α2)(β2) = 0 [see দ্বিঘাত সমীকরণ গঠন]

⇒ x2+2x+9 = 0

Short-cut : ax2+bx+c = 0 সমীকরণের মূলদ্বয় α ও β হলে α2 ও β2 মূলবিশিষ্ট সমীকরণ হবে, a2x 2+(b2-2ca)x+c2 = 0

xii. নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = 1/α3 + 1/β3

=α3+β3α3β3
=(α+β)33αβ(α+β)(αβ)3 [See important formula v]

= (23-3.3.2)/33

= 10/27

মূলদ্বয়ের গুণফল = 1/α3 . 1/β3

= 1/(αβ)3

= 1/27

∴ 1/α3 ও 1/β3 মূলবিশিষ্ট সমীকরণ হবে,

x2-(1/α3 + 1/β3 )x+(1/α3)(1/β 3) = 0 [see দ্বিঘাত সমীকরণ গঠন]

⇒ x2-(10/27)x+1/27 = 0

⇒ 27x2-10x+1 = 0

Short-cut : ax2+bx+c = 0 সমীকরণের মূলদ্বয় α ও β হলে 1/α3 ও 1/β3 মূলবিশিষ্ট সমীকরণ হবে, c3x+b(b 2-3ac)x+a3 = 0

5. 51 কোন দ্বিঘাত সমীকরণের একটি মূল হলে অপর মূলটি কত? সমীকরণটি নির্ণয় কর ।

সমাধান :

এখানে, একটি মূল 51=1+i5[i=1]

∴ অপর মূল = 1i5 [See অনুবন্ধী মূল উপপাদ্য]

∴ নির্ণেয় সমীকরণের, মূলদ্বয়ের যোগফল = 1+i51i5=2

মূলদ্বয়ের গুণফল = (1+i5)(1i5)

(1)2(i5)2 [(a+b)(a-b) = a2-b 2]

= 1-i25

= 1-i2.5

= 1+5 [i2 = -1]

= 6

∴ নির্ণেয় সমীকরণ, x2(1+i5)(1i5)x+(1+i5)(1i5)=0 [see দ্বিঘাত সমীকরণ গঠন]

⇒ x2+2x+6 = 0

Short-cut : কোন দ্বিঘাত সমীকরণের একটি মূল a+ib হলে সমীকরণটি হবে, x 2-2ax+(a2+b2)=0

6. 3x2-2x+k=0 সমীকরণের মূলদ্বয়ের অন্তর 1 একক হলে k এর মান কত?

সমাধান :

ধরি, সমীকরণের মূলদ্বয় α ও β (যেখানে α>β)

দেওয়া আছে, α-β=1 এখানে, α+β = -(-2/3) = 2/3 [See দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক i]

এবং αβ = k/3 [See দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক ii]

এখন, 4αβ = (α+β)2-(α-β)2 [See Important formulae iii]

⇒ 4αβ = (2/3)2-(1)2

⇒ 4.(k/3) = 4/9-1

⇒ (4/3)k = -5/9

∴ k = -5/9 × 3/4 = -5/12

Short-cut : ax2+bx+c=0 সমীকরণের মূলদ্বয়ের অন্তর 1 একক হলে, b 2-a2 = 4ca

এক্ষেত্রে, (-2)2-32 = 4.k.3

⇒ 12k = -5

⇒ k = -5/12

7. px2+qx+q=0 সমীকরণের মূলদ্বয়ের অনুপাত m∶n হলে, mn+nm+qp এর মান কত?

সমাধান :

ধরি, সমীকরণের মূলদ্বয় α ও β ।

∴ α+β = -q/p [see দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক i]

∴ αβ = q/p [see দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক ii]

দেওয়া আছে, α/β = m/n

তাহলে, mn+nm+qp

⇒ αβ+βα+qp

⇒ αβ+βα+qp[xy=xy]

(α)2+(β)2αβ+qp
α+βαβ+qp[xy=xy&(x)2=x]
q/pq/p+qp
q/p×q/pq/p+q/p[x=x×x]
q/p+q/p=0

8. ax2+2x+1 = 0 এবং x2+2x+a = 0 সমীকরণদ্বয়ের একটি সাধারণ মূল থাকলে a এর মান নির্ণয় কর । (a≠1)

সমাধান :

ধরি, সাধারণ মূল p ।

∵ p উভয় সমীকরণের সাধারণ মূল ∴ p দ্বারা সমীকরণদ্বয় সিদ্ধ হবে ।

অর্থাৎ, ap2+2p+1=0 …(i)

এবং, p2+2p+a=0 …(ii)

(i) ও (ii) থেকে বজ্রগুণন পদ্ধতির সাহায্যে পাই,

p22a2=p1a2=12a2 …(iii) [a1x2+b1x+c1 = 0 ও a 2x2+b2x+c2=0 হলে বজ্রগুণন পদ্ধতি অনুসারে, x2b1c2b2c1=xc1a2c2a1=1a1b2b2a1 ]

(iii) ⇒ = p22a2=p1a2

⇒ p2 = 1

⇒ p = ±1

আবার, (iii)

11a2=12a2
p=(a21)2a2
p=(a+1)(a1)2(a1)
p=(a+1)2(iv)

P=1 হলে (iv) ⇒ (a+1)2=1

⇒ -a-1 = 2

⇒ a=1

P = -1 হলে (iv) ⇒ (a+1)2=1

⇒ -a-1 = -2

⇒ a = 1

বিকল্প পদ্ধতি :

ধরি, সাধারণ মূল p ।

∴ ap2+2p+1 = 0 …(i) এবং, p2+2p+a = 0 …(ii)

(i) – (ii) ⇒ ap2-p2+1-a = 0

⇒ p2(a-1)-(a-1) = 0

⇒ (p2-1)(a-1) = 0

কিন্তু a≠1⇒ a-1 ≠ 0

∴ p2-1=0 ⇒ p = ±1

p=1 হলে (i) ⇒ a(1)2+2(1)+1=0 ⇒ a = -3

p=-1 হলে (i) ⇒ a(-1)2+2(-1)+1=0 ⇒ a = 1

ঢাবির বিগত বছরের প্রশ্ন ও সমাধান :

1. x2-5x-3=0 সমীকরণের মূলদ্বয় α, β হলে 1/α, 1/β মূলবিশিষ্ট সমীকরণ কোনটি? [DU : 1999-2000]

a. 3x2+5x-1=0

b. 3x2-5x+1=0

c. 5x2+x-3=0

d. 5x2-x-3=0

2. x2-4x+4=0 এর বীজদ্বয় α এবং β হলে α33 এর মান কত? [DU : 2000-01]

a. 24

b. 32

c. 16

d. 8

3. x2-5x-3=0 সমীকরণের মূলদ্বয় x1, x 2 হলে 1/x1, 1/x2 মূলবিশিষ্ট সমীকরণ কি? [DU : 2001-02]

a. 3x2-5x+1=0

b. 5x2+x-3=0

c. 3x2+5x-1=0

d. 5x2-x-3=0

4. p এর কিরূপ মানের জন্য x2+px+1 = 0 সমীকরণটির মূলদ্বয় জটিল হবে? [DU : 2002-03]

a. -2≤p≤2

b. -4<p≤4

c. -2<p<2

d. -4≤p<4

5. 6x2-5x+1=0 সমীকরণের মূলদ্বয় α, β হলে 1/α, 1/β মূল বিশিষ্ট সমীকরণটি হবে- [DU : 2004-05]

a. x2-5x+6=0

b. 3x2-2x+5=0

c. x2-6x+5=0

d. 5x2+2x-6=0

6. k এর যে মানের জন্য সমীকরণ (k+1)x2+4(k-2)x+2k = 0 এর মূলদ্বয়ের মান সমান হবে তা- [DU : 2004-05]

a. 4

b. 8

c. 2

d. 3

7. x2-2x+3=0 সমীকরণের মূলদ্বয় α, β হলে α+β, αβ মূলবিশিষ্ট সমীকরণটি হবে- [DU : 2005-06]

a. x2-5x+6 = 0

b. 3x2-2x+1 = 0

c. x2-3x+2 = 0

d. 2x2-3x+1 = 0

8. x2-3x+5 এর ন্যূনতম মান- [DU : 2006-07]

a. 3

b. 5

c. 15/4

d. 11/4

9. x2-5x-1 = 0 সমীকরণের মূলদ্বয় হতে 2 কম মূলবিশিষ্ট সমীকরণটি হল- [DU : 2007-08]

a. x2+x+7 = 0

b. x2-x-7 = 0

c. x2+x-7 = 0

d. x2-x-7 = 0

10. 5+3x-x2 এর সর্বোচ্চ মান- [DU : 2008-09]

a. 3

b. 11/4

c. 29/4

d. 27/4

11. x2-7x+12 = 0 সমীকরণের মূলদ্বয় α এবং β হলে, α+β এবং αβ মূলবিশিষ্ট সমীকরণ- [DU : 2009-10]

a. x2-19x+84 = 0

b. x2+14x+144 = 0

c. x2-14x+144 = 0

d. x2+19x-84 = 0

ঢাবির বিগত বছরের প্রশ্নের সমাধান :

1. নির্ণেয় সমীকরণ, -3x2-5x+1=0 [see example 4 (ii)]

⇒ 3x2+5x-1 = 0

∴ ans. a

2. এখানে, α+β=4; αβ=4 [See দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক]

∴ α33 = (α+β)3-3αβ(α+β)

= 16

∴ ans. c

3. নির্ণেয় সমীকরণ, -3x2-5x+1=0 [see example 4 (ii)]

⇒ 3x2+5x-1 = 0

∴ ans. c

4. মূলদ্বয় জটিল হবে যদি p2– 4 < 0

⇒ p2 < 4 [see example 3 (c)]

⇒ -2<p<2 হয়

∴ ans. c

5. নির্ণেয় সমীকরণ, x2-5x+6=0

∴ ans.a

6. মূলদ্বয় সমান হবে যদি {4(k-2)}2-4.(k+1).2k=0 হয় [See example 3(a)]

⇒ 16(k-2)2 = 8k(k+1)

⇒ 2(k2-4k+4) = k2+k

⇒ 2k2-8k+8 = k2+k

⇒ k2-9k+8 = 0

⇒ k = 1 or, 8 [use calculator/manually factorize through middle term process]

∴ ans.b

7. α+β = 2; αβ = 3; ∴ α+β+αβ = 5 &, (α+β)(αβ) = 6 [see example 4 (iv)]

∴ নির্ণেয় সমীকরণ, x2-5x+6 = 0

∴ ans.a

8. –b/2a = 3/2

∴ f(3/2) = (3/2)2-3(3/2)+5 [see example 9]

= 11/4

∴ ans.d

10. α+β = 5; αβ = -1 [See দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক]

∴ (α-2)(β-2) = αβ-2(α+β)+4 = -7

∴ α-2+β-2 = 1

∴ x2-(α-2+β-2)x+(α-2)(β-2) = 0 [see দ্বিঘাত সমীকরণ গঠন]

⇒ x2-x-7 = 0

∴ ans.d

10. –b/2a = 3/2

∴ f(3/2) = 5+3(3/2)-(3/2)2 = 29/4 [see example 9]

∴ ans.c

11. α+β = 7; αβ = 12 [See দ্বিঘাত সমীকরণের মূল-সহগ সম্পর্ক]

∴ α+β+αβ = 19; ∴ (α+β)(αβ) = 84

∴ x2-(α+β+αβ)x+(α+β)(αβ) = 0 [see example 4 (iv)]

⇒ x2-19x+84 = 0

∴ ans.a

ভাগশেষ উপপাদ্য (Remainder Theorem):

কোনো বহুপদী f (x) কে x-α দ্বারা ভাগ করলে, ভাগশেষ f (α) হবে।

প্রমাণ (Proof):

মনে করি, বহুপদী f(x) কে x-α দ্বারা ভাগ করলে, f (x )= (x-α)  Q+R…… (1) হয় :

যেখানে ভাগফল Q হচ্ছে x এর n-1 ঘাতের বহুপদী এবং ভাগশেষ R হচ্ছে ধ্রুবক। দেখাতে হবে যে, R = f (α)

(1) নং সমীকরণে x=α বসিয়ে পাই, f (α) = (α-α)  Q+R  ∴R = f(α)

প্রত্যেক nঘাতের বহুপদী সমীকরণ f (x)=0 এর কেবলমাত্র সংখ্যক মূল আছে। (Every polynomial of degree “n” has exactly “n” roots)

প্রমাণ (Proof): মনে করি, f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n} একটি n ঘাতবিশিষ্ট বহুপদী সমীকরণ।

বীজগণিতীয় মৌলিক উপপাদ্য অনুসারে, প্রত্যেক n (n≥1) ঘাতের বহুপদী সমীকরণ f(x)=0 এর কমপক্ষে একটি এবং বাস্তব অথবা অবাস্তব মূল বিদ্যমান।

ধরি, সমীকরণ f (x) এর একটি মূল a_{1} । তাহলে উৎপাদক উপপাদ্য অনুযায়ী f(x) এর একটি উৎপাদক x-a_{1}

সুতরাংf(x)=\left(x-\alpha_{1}\right) \varphi_{1}(x) \ldots \ldots \ldots \ldots \ldots(i)

যেখানে \varphi_{1}(x) হলো n  – 1 ঘাতের বহুপদী যার প্রথম পদ =a_{0} x^{n-1}

আবার বীজগণিতীয় মৌলিক উপপাদ্য অনুসারে  এর কমপক্ষে একটি মূল বিদ্যমান।

ধরি, সমীকরণ \varphi_{1}(x)=0এর একটি মূল a_{2}। তাহলে উৎপাদক উপপাদ্য অনুযায়ী \varphi_{1}(x) এর একটি উৎপাদক x-a_{2}

সুতরাং \varphi_{1}(x)=\left(x-\alpha_{2}\right) \varphi_{2}(x) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { (ii) }

যেখানে, \varphi_{2}(x) হলো n-2 ঘাতের বহুপদী যার প্রথম পদ =a_{0} x^{n-2}

এখন (i) নং এবং (ii) নং হতে পাই,f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \varphi_{2}(x)

এভাবে অগ্রসর হয়ে n ধাপের পর পাওয়া যাবে,

f(x)=\left(x-a_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \ldots \ldots \ldots \varphi_{n}(x) \ldots \ldots \ldots \ldots \ldots \ldots \text { (iii) }

সুতরাং (iii) নং হতে পাওয়া যায়,

f(x)=a_{0}\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \ldots \ldots \ldots\left(x-\alpha_{n}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { (iv) }

এখন, \alpha_{i} \in\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{n}\right. হলে (iv) নং হতে পাওয়া যাবে, f\left(a_{i}\right)=0  যেখানে i = 1, 2, 3,……, n

অতএব, f(x)=0 বহুপদী সমীকরণের n সংখ্যক মূল a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{n} বিদ্যমান।

এখন যদি \alpha \notin\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{n}\right\} হয়, তবে f(\alpha)=a_{0}\left(\alpha-\alpha_{1}\right)\left(\alpha-\alpha_{2}\right)\left(\alpha-\alpha_{3}\right) \ldots \ldots \ldots\left(\alpha-\alpha_{n}\right) \neq 0

সুতরাং বহুপদী সমীকরণ এর f(x)=0 \text { এর } \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{n}  এ n সংখ্যক মূল ব্যতীত অন্য কোনো মূল বিদ্যমান থাকতে পারে না।

মূলদ সহগবিশিষ্ট একটি বহুপদী সমীকরণের অমূলদ মূলগুলি যুগলে থাকে (In a polynomial equation with rational coefficients, irrational roots occur in pairs) 

প্রমাণ (Proof): মনে করি, f (x) = 0 একটি মূলদ সহগবিশিষ্ট বহুপদী সমীকরণ এবং x=p+\sqrt{q} এর একটি মূল, যেখানে P∈Q এবং \sqrt{q}=Q^{\prime} তাহলে,  f(p+\sqrt{q})=0 \ldots \ldots \text { (i) }

আবার, যেহেতু বহুপদী f (x) এর সহগগুলি মূলদ।

সুতরাং f(p+\sqrt{q})=A+\sqrt{B} …… (ii) এবং f(p-\sqrt{q})=A-\sqrt{B} …….(iii)

যেখানে A ∈ Q এবং \sqrt{B}=Q^{\prime}

এখন (i) নং ও (ii) নং হতে পাই, \mathbf{0}=A+\sqrt{B}

বা, A = 0, B = 0 [কারণ একটি মূলদ ও একটি অমূলদ সংখ্যার যোগফল শূন্য হতে পারে না]

তাহলে (iii) নং হতে পাওয়া যায় f(p-\sqrt{q})=0

সুতরাং প্রদত্ত সমীকরণের একটি মূল p+\sqrt{q} হলে অপর একটি মূল p-\sqrt{q} পাওয়া যায় এবং বিপরীতক্রমে p-\sqrt{q} একটি মূল হলে p+\sqrt{q} অপর একটি মূল পাওয়া যাবে।

অতএব মূলদ সহগবিশিষ্ট একটি বহুপদী সমীকরণের অমূলদ মূলগুলি যুগলে থাকে।

উদাহরণ (Example): x^{3}-6 x^{2}+9 x-2=0একটি মূলদ সহগবিশিষ্ট বহুপদী সমীকরণ।

এর অমূলদ যুগল মূল 2+√3 এবং 2-√3 বিদ্যমান।

আবার x^{3}-(7+\sqrt{2}) x^{2}+(12+7 \sqrt{2}) x-12 \sqrt{2}=0 একটি বহুপদী সমীকরণ। সমীকরণের x=\sqrt{2} একটি মূল কিন্তু x=-\sqrt{2} মূল নয়। এ সমীকরণটি মূলদ সহগবিশিষ্ট নয়। মূলদ সহগবিশিষ্ট সমীকরণ হলে, এর একটি মূল x=-\sqrt{2} পাওয়া যেত।

বাস্তব সহগবিশিষ্ট একটি বহুপদী সমীকরণের কাল্পনিক (অবাস্তব) মূলগুলি অনুবন্ধী যুগলে থাকে (In a polynomial equation with real coefficients, imaginary roots occur conjugate pairs)

প্রমাণ (Proof): মনে করি, f (x) = 0 একটি বাস্তব সহগবিশিষ্ট বহুপদী সমীকরণ এবং x = p + iq এর একটি মূল, যেখানে p,q ∈ R এবং i=\sqrt{-1}  তাহলে f (p+ iq) = 0 ……….(i)

আবার, যেহেতু বহুপদী f(x) এর সহগগুলি বাস্তব।

সুতরাং f(p+ iq) = A + iB……….(ii) এবং = A-iB……………………(iii)

যেখানে A,B ∈ R  এবং i= \sqrt{-1}

এখন (i) ও (ii) নং হতে পাই, 0=A+iB

বা, A = 0, B = 0 [কারণ A=0 ও B=0 না হলে A+iB = 0 হতে পারে না।]

A = 0 ও B = 0 বসিয়ে (iii) নং হতে পাওয়া যায়, f(p-iq) = 0

সুতরাং প্রদত্ত সমীকরণের একটি মূল p+iq হলে অপর একটি মূল p-iq পাওয়া যায়।

আবার বিপরীত ক্রমে একটি মূল p-iq হলে অপর একটি মূল p + iq পাওয়া যাবে।

অতএব বাস্তব সহগবিশিষ্ট একটি বহুপদী সমীকরণের কাল্পনিক (অবাস্তব) মূলগুলি অনুবন্ধী যুগলে থাকে।

উদাহরণ (Example): বাস্তব সহগবিশিষ্ট একটি বহুপদী সমীকরণ 2 x^{3}-9 x^{2}+14-5=0 এর কাল্পনিক অনুবন্ধী যুগল মূল 2 + i এবং 2 – i বিদ্যমান।

আবার x^{3}+(5-i) x^{2}+(6+5 i) x-6 i=0 একটি বহুপদী সমীকরণ। সমীকরণের x=i একটি মূল কিন্তু x=-i মূল নয়। এ সমীকরণটি বাস্তব সহগবিশিষ্ট নয়। বাস্তব সহগবিশিষ্ট সমীকরণ এ একটি মূল x = i হলে অপর একটি মূল x = -i পাওয়া যেত।

আমাদের পোষ্ট গুলো প্রতিনিয়ত আপডেট করা হয়। বিসিএস,প্রাইমারি সহ সব পরীক্ষার প্রতিনিয়ত প্রশ্ন অনুযায়ী পোষ্ট গুলো আমরা আপডেট করি। সবার জন্য শুভ কামনা রইলো।

এতক্ষন আমাদের সাথে থাকার জন্য ধন্যবাদ!

Exit mobile version